CHAPTER

Statistics

ARITHMETIC MEAN

(i) Arithmetic Mean for Unclassified (Ungrouped or Raw)
Data: If there are n observations, x₁, x₂, x₃, ..., x_n, then their arithmetic mean

A or
$$\overline{x} = \frac{x_1 + x_2 + ... + x_n}{n} = \frac{\sum_{i=1}^{n} x_i}{n}$$

(*ii*) Arithmetic Mean for Discrete Frequency Distribution or Ungrouped Frequency Distribution: Let $f_1, f_2,..., f_n$ be corresponding frequencies of $x_1, x_2,...,x_n$. Then, arithmetic mean

$$A = \frac{x_1 f_1 + x_2 f_2 + \dots + x_n f_n}{f_1 + f_2 + \dots + f_n} = \frac{\sum_{i=1}^n x_i f_i}{\sum_{i=1}^n f_i}$$

(*iii*) Arithmetic Mean for Classified (Grouped) Data or Grouped Frequency Distribution: For a classified data, we take the class marks x_1, x_2, \dots, x_n of the classes, then arithmetic mean by

$$A = \frac{\sum_{i=1}^{n} x_i f_i}{\sum_{i=1}^{n} f_i}$$

Combined Mean: If A_1 , A_2 ,..., A_r are means of n_1 , n_2 ,..., n_r observations respectively, then arithmetic mean of the combined group is called the combined mean of the observation.

$$A = \frac{n_1 A_1 + n_2 A_2 + \dots + n_r A_r}{n_1 + n_2 + \dots + n_r} = \frac{\sum_{i=1}^r n_i A_i}{\sum_{i=1}^r n_i}$$

MEDIAN

Median for Simple Distribution or Raw Data

Firstly, arrange the data in ascending or descending order and then find the number of observations n.

(a) If n is odd, then $\left(\frac{n+1}{2}\right)$ th term is the median.

(b) If n is even, then there are two middle terms namely $\left(\frac{n}{2}\right)^{\text{th}}$

and
$$\left(\frac{n}{2}+1\right)$$
th terms, median is mean of these terms.

Median for Classified (Grouped) Data or Grouped Frequency Distribution

For a continuous distribution, median

$$M_d = l + \frac{\frac{N}{2} - C}{f} \times h$$

where, l = lower limit of the median class

f = frequency of the median class

$$N = \text{total frequency} = \sum_{i=1}^{n} f_i$$

C = cumulative frequency of the class just before the median class

h =length of the median class

Mode for Classified (Grouped) Distribution or Grouped Frequency Distribution

$$M_{o} = l + \frac{f_{0} - f_{1}}{2f_{0} - f_{1} - f_{2}} \times h$$

where, l = lower limit of the modal class

- $f_0 =$ frequency of the modal class
- f = frequency of the pre-modal class
- f = frequency of the post-modal class
- h = length of the class interval

Relation Between Mean, Median and Mode

- (*i*) Mean Mode = 3 (Mean Median)
- (ii) Mode = 3 Median 2 Mean

MEAN DEVIATION (MD)

(*i*) For simple (raw) distribution, $\delta = \frac{\sum_{i=1}^{n} |x_i - \overline{x}|}{n}$

where, n = number of terms, $\overline{x} = A$ or M_{d} or M_{d}

(ii) For unclassified frequency distribution, $\delta =$

$$\frac{\sum_{i=1}^{n} f_i \left| x_i - \overline{x} \right|}{\sum_{i=1}^{n} f_i}$$

(*iii*) For classified distribution, $\delta = \frac{\sum_{i=1}^{n} f_i \left| x_i - \overline{x} \right|}{\sum_{i=1}^{n} f_i}$

where, x_i is the class mark of the interval.

STANDARD DEVIATION AND VARIANCE

(*i*) For simple distribution

$$\sigma = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n}} = \frac{1}{n} \sqrt{n \sum_{i=1}^{n} x_i^2 - \left(\sum_{i=1}^{n} x_i\right)^2}$$

where, *n* is a number of observations and \overline{x} is mean.

(*ii*) For discrete frequency distribution

$$\sigma = \sqrt{\frac{\sum_{i=1}^{n} f(x_i - \overline{x})^2}{N}} = \frac{1}{N} \sqrt{N \sum_{i=1}^{n} f_i x_i^2 - \left(\sum_{i=1}^{n} f_i x_i\right)^2}$$

(iii) For continuous frequency distribution

$$\sigma = \sqrt{\frac{\sum_{i=1}^{n} f_i (x_i - \overline{x})^2}{N}}$$

where, x_i is class mark of the interval.

Standard Deviation of the Combined Series

If n_1 , n_2 are the sizes, \overline{X}_1 , \overline{X}_2 are the means and σ_1 , σ_2 , are the standard deviation of the series, then the standard deviation of the combined series is

$$\sigma = \sqrt{\frac{n_1(\sigma_1^2 + d_1^2) + n_2(\sigma_2^2 + d_2^2)}{n_1 + n_2}}$$
$$d_1 = \overline{X}_1 - \overline{X}, d_2 = \overline{X}_2 - \overline{X}$$

where,

and

$$\overline{X} = \frac{n_1 \overline{X}_1 + n_2 \overline{X}_2}{n_1 + n_2}$$

IMPORTANT POINTS TO BE REMEMBERED

- (*i*) The ratio of SD (σ) and the AM (\overline{x}) is called the coefficient of standard deviation $\left(\frac{\sigma}{\overline{x}}\right)$
- (*ii*) The percentage form of coefficient of SD i.e. $\left(\frac{\sigma}{\overline{x}}\right) \times 100$ is called coefficient of variation.
- (*iii*) The distribution for which the coefficient of variation is less is more consistent.
- (*iv*) Standard deviation of first *n* natural numbers is $\sqrt{\frac{n^2-1}{12}}$.
- (v) Standard deviation is independent of change of origin, but it depends on change of scale.

